
Iterators

If you have data stored in an ArrayList, it is an easy
matter to go to the nth element of the list --
because arrays are contiguous blocks of memory,
the address of the nth element can be computed
as an offset from the start of the array.

The only way to find the nth element of a linked
list is to start at the beginning and walk n steps.

Suppose you want to sum the first n elements of a
list L of integers:

int sum = 0;
for (int i = 0; i < n; i++)

sum += L.get(i);

For ArrayLists each get() is constant time, so this
sum takes O(n) time to compute, as you would
expect. For LinkedLists get(i) takes i steps, so this
sum takes time O(n2) to compute. This is much
worse than O(n) when n is large.

Of course, if you have access to the Node structure
of the linked list you can find the sum in time O(n):

int sum = 0;
Node p = L.head.next;
while (p != L.tail) {

sum += p.data;
p = p.next;

}

But one of the goals of object-oriented
programming is to hide implementation details, so
we don't want to give application programmers
access to the Node structure.

Iterators are a solution to this problem. An
iterator is an object that has a sense of its current
location in the structure and can move around
efficiently. Here is code that works efficiently with
both ArrayLists and LinkedLists:

Iterator it = L.iterator();
int sum = 0;
while (it.hasNext())

sum += it.next();

There are two kinds of iterators for a list with base-
type E. The basic Iterator class is very simple, with
just three methods:

• boolean hasNext(), which tells you if there
are more elements of the list

• E next(), which gets the data value stored in
the next element of the list

• void remove(), which removes the element
returned by the last call to next().

The ListIterator class adds more methods to this
class. For one thing, it allows you to move in either
direction: it.next() and it.previous(). There is also a
set(e) method that changes the data in the last
node that was referenced by next() or previous(),
and an add(e) method that inserts data into the list.

In Lab 4 you will implement the ListIterator class for
a doubly-linked list.

When you are thinking about what the iterator will
do, it helps to think of its current position as
halfway between two nodes: the nodes it will get
to on calls to next() and previous().

head tail

7 11 13

current position

Your code will probably need to put the current
marker at one node or another, but you can use
this picture as a guide to behavior.

There are two issues you must face when
implementing iterators. One is that some
operations aren't allowed after operations that
change the structure of the list. You can't do a
set() operation immediately after an add() or
remove(). set() remove() and add() all assume
that the previous operation was next() or
previous() and they work on the value that was
returned by that operation. Your iterator needs to
keep track of this.

The other tricky aspect to iterators is that changes
to the list structure could come from multiple
sources. For example, an iterator might be used to
walk along the nodes of a list deleting those that
contain prime numbers. This might be running
simultaneously with other list operations. If the
iterator sees that the next node has value 23 and
goes to delete it, it is possible that this node was
deleted by something else after the iterator saw it.
In this case the iterator will end up deleting the
wrong node.

To avoid this iterators throw an exception when
they try to change the list if anything external to
them (a list operation or another iterator) has
changed the list since they were created. It is
okay for something to change the list before your
iterator is created, but if the list is changed after
the iterator is created then the iterator itself is no
longer able to make any changes.

This is actually easy to enforce. Give the list class
a variable called modCount (for "modification
count") and the iterator class a variable called
myModCount. Anything that changes the list
structure (an iterator or list operation) should
increment the list's modCount. When the iterator
is created it takes the list's modCount as the
starting value for its own myModCount. If the
iterator changes the list, it increments both the
list's and its own counts. If the iterator ever sees
that the list's count is different from its own, it
knows that something else has changed the list.
Isn't that clever??

